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FURY: A REMOTE UNDERGROUND STORAGE TANK 
INSPECTION/ASSESSMENT SYSTEM 

USACERL 
Champaign, IL 61826 USA 

1-800/USA-CERL 

29 June, 1998 

1. Introduction 

1.1 Background Information 
The necessity for developing non-invasive procedures for tank condition assessment is currently 
predicated on the initial removal of tank hazardous wastes followed by the complete removal of 
the tank from the ground. This is an expensive effort because current EPA requirements dictate 
that regular procedures be implemented to ensure the usefulness of tank walls and the prevention 
of seepage of tank contents in groundwater. Continued reliance on this method has resulted in 
increased maintenance fees and new methods for cheaper and safer inspection ofUST's is 
needed. 



Ultrasonic thickness inspection methods are widely used in a number of industries. There are 
ASTM standards for measurement procedures [26, 27] as well as existing certification programs 
for technicians. Currently approved in NLP A 631, "Entry, Cleaning, Interior Inspection, Repair 
and Lining of Underground Storage Tanks", are hand held ultrasonic thickness measurement 
techniques for the assessment ofUST condition. The robotic tank inspection system combines 
two existing technologies to produce a cost-effective tool for underground storage tank 
inspection. Mobile robots have been used to move inspection devices over structures. Ultrasonic 
transducers have been extensively used to inspect metallic structures. These technologies are 
combined and extended to provide a robotic inspection system that enters the tank through an 
existing fill pipe, moves over the interior surfaces of the tank and can operate in tanks containing 
combustible liquids or vapors. 
The U.S. Army Construction Engineering Research Laboratories (USACERL) in conjunction 
with RedZone Robots has developed an automatic in-situ tank assessment system which 
eliminates the problems of safety and expense often associated with tank inspection. The robot is 
currently under development through an SBIR Phase II contract and is designed for 
implementation by DoD customers with UST's containing hazardous wastes as well as in a dual 
use mode in the commercial sector. In order to achieve this The FURY robot moves by means of 
magnetic wheels and has a central pivot to allow for full motion of the steering head. FURY also 
utilizes ultrasonic transducers to measure the thickness of the tank wall at all locations and 
includes 90-degree transition arms for robot positioning on endcaps. Control of the FURY is 
accomplished through a tether attached to the rear of the robot. The robot is designed to fit 
through a small diameter pipe, which mitigates invasive tank entry during assessment and allows 
for non-destructive evaluation. 
Leaking underground storage tanks (USTs) containing petroleum products are a source of soil 
and ground water pollution. As a result, the Environmental Protection Agency (EPA) and others 
developed requirements adopted into the Code of Federal Regulations. As required by 40 CFR 
280 and 281, all existing UST systems must be, or upgraded to be, in compliance with one of the 
allowed alternatives not later than December 22, 1998 [I]. In addition to closure, total UST 
replacement, and internal lining (banned by AR 200-1 ), these alternatives include the option of 
upgrading with cathodic protection. For USTs which are 10 years old or more it is required that 
the UST's integrity be ensured prior to upgrade. A comprehensive study performed by the 
United States Environmental Protection Agency (EPA) estimates there are 796,000 motor fuel 
storage tanks within the United States with a mean age of 12 years [2]. The U.S. Army owns and 
operates some 20,000 USTs that must meet the compliance requirements of 40 CFT 280-281. 
It has been established that the predominant mode ofUST failure is from external pitting 
corrosion [3-5]. Pitting is a localized form of corrosion, which is dependent on a number of 
factors (e.g., soil resistivity, moisture, pH, temperature, chloride/sulfide levels) and can lead to 
UST perforations. One study, [4], closely examined 500 steel USTs immediately after 
excavation and another, [3], analyzed test data from 1,636 steel USTs. Taken together it was 
determined that perforation was caused by external, pitting corrosion some 70-80% of the time. 
Failures were found to occur less then 3% of the time [3-5]. 
The nature of pitting corrosion has been extensively studied [6-11]. For USTs some causes of 
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external pitting are: non-select backfill (which could include rocks, twigs, beverage cans, shells 
etc.), scratches, adjacent areas with differential oxygen or water content, local inhomogeneities in 
the steel alloy composition, stray subsurface DC currents, and differing types of soils. The study 
of corrosion of metals buried in soils goes back a number of years. One study begun in 1922 by 
the National Bureau of Standards [12] ran for over 30 years and compiled data on 37,000 
specimens. Some work has been done on the natural rate of pit growth [3, 13, 14] in a variety of 
environments but these are not inclusive of all environments typically encountered by USTs. 
UST perforation is directly correlated to pit depth. When sufficient metal ions have migrated 
away from a localized pitting area in the presence of an electrolyte, such as water, the remaining 
tank wall thickness decreases to zero and a perforation results. A typical UST will in time 
experience a distribution of pitting areas over the external soil side surface and, as well, a 
distribution of growing pit depths. 
It should be noted that virtually every standard or federal regulation relating to the upgrade of 
existing UST systems refers to soil side corrosion. In accordance with both ASTM ES 40-94 
[24] and NLP A 631 1 a tank is acceptable for upgrade with cathodic protection when no pitting is 
greater than 50% of the original wall thickness and the average wall thickness remaining is 
greater than 85% of the original wall thickness. With the addition of cathodic protection and 
required follow up system maintenance, all external UST corrosion is stopped. 
Some areas where corrosion occurs more frequently have been suggested but documentation is 
scarce. These areas include the bottom external third of the UST, as well as occasionally the 
internal "water" line and at the inside top from moisture condensation. The existing inspection 
standards do not address these areas specifically and instead call for a randomly distributed 
sampling. 
Owing to the nature of pitting corrosion 100% inspection is not needed to assess a buried 
structure's condition. In 1963 after 3,000 pit depth measurements, a relationship predicting the 
maximum pit depth from the average pit depth was determined [15]. For soil side corrosion of 
gas piping [3, 13] this relationship of the average pit depth to the maximum pit depth was 
empirically found to be, 

P(max) = 1.41 P(avg.). 

In a more rigorous manner the so-called Hazard Function (used for in-service component failures 
and actuarial tables), or extreme-value statistics also applies. The theory behind extreme-value 
statistics is well established [17] and, has been applied to soil side, external pitting corrosion [19-
22]. The sample size that is required for ultrasonic wall thickness measurements according to an 
EPA report on inspection procedures and equipment [23] (which references UL58, API 1631 and 
NLP A 631) has been estimated as 7% of the total wall area. In ASTM ES 40-94 [24] this has 
been essentially doubled to 15%. One of the main benefits of the Fury robotic assessment 
system will be the ability to cost effectively and accurately determine a tank's current condition. 

1 National Leak Prevention Association (NLPA) 631, Entry, Cleaning, Interior Inspection, Repair and Lining of 
Underground Storage Tanks 
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1.2 Official DoD Requirement Statement(s) 
N 2.III.2.a Environmentally Safe Storage Capability 

1.3 Objectives of the Demonstration 
One cost-effective compliance option for USTs over 10 years old is condition assessment 
followed by upgrading with cathodic protection. In support of this option Army wide, an 
improved inspection and assessment robotic technology was developed under the Small Business 
Investment Research (SBIR) program, and is being demonstrated under support from the 
Environmental Security Technology Certification Program (ESTCP). A previous demonstration 
at Ft. Lee, VA served to validate the capabilities of this inspection system in part through result 
comparison with third party inspection of an excavated UST [29]. The objectives of the 
demonstration at the Hunter Army Air Field (a sub-installation of Ft. Stewart, GA) include the 
remote assessment of the condition of three, 50,000 gal. USTs from a total of thirty-one 50,000 
gal. USTs. To accomplish this, the applicability of the new robotic inspection and assessment 
technology for determining the condition ofUSTs will be demonstrated and validated. The data 
collected by this technology will be used to help determine how suitable these tanks may be for 
upgrading with cathodic protection, thus avoiding the significant expense of replacement. 
The Ft. Lee tank, being scheduled for removal, was used mainly for validation purposes. In 
addition to an inspection in accordance with ASTM ES40-94 [32], a number of performance 
capabilities were documented on videotape. This included a real time video feed from inside the 
tank to an outside monitor. The capabilities documented included: entry/exit through a riser 
pipe, adherence to the inner tank wall in all orientations, movement in the forward and reverse 
directions, obstacle sensing and avoidance, traversal of lap joints, transitions to and from endcap 
walls, navigational accuracy, surface cleaning and ultrasonic thickness measurements. After the 
tank was removed MRI, INC. performed a third party inspection in accordance with procedures 
developed by the EPA [33]. 
At Hunter Army Air Field a demonstration of the Fury robotic system was performed. Three 
USTs of 50,000 gal. capacity were assessed according to ASTM ES40-94. This information will 
be used to make better informed management decisions concerning upgrade versus replacement. 
The full replacement of30 tanks at Hunter has been estimated at $10M. If some or all of these 
tanks are found to be suitable for upgrade then a significant cost will be avoided. 

1.4 Regulatory Issues 
United States Environmental Protection Agency regulations contained in CFR 280-281 require 
that underground storage tanks be protected from the effects of perforation due to corrosion. In 
particular, tanks installed on or before Dec. 22, 1988, the effective date of the regulations, must 
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be upgraded or replaced by Dec. 22, 1998. Two upgrade measures are allowed: cathodic 
protection and/or tank lining. Under federal law, states have enforcement responsibility and may 
impose more stringent requirements. Determining tank condition is necessary in order to decide 
if a tank should be upgraded or replaced. 
Risk-based corrective action (RBCA), a formalized, decision-making process that takes risk into 
account when determining site remediation strategies, is being used increasingly at contaminated 
UST sites. For example, if a site is contaminating groundwater but there are no drinking wells in 
the area and the plume does not appear to be expanding, then indefinite monitoring of the site 
may be sufficient. If the groundwater is being used for drinking or if the plume is migrating, 
however, then a full scale groundwater cleanup may be required. Clearly, RBCA can have a 
major impact on determining what the eventual cleanup costs will be. To perform RBCA 
correctly extensive site assessment information, which requires additional soil borings and 
monitoring wells, is necessary. The EPA is not officially promoting RBCA, but it is providing 
the information to states to allow them to make their own decisions on how to incorporate risk
based decision-making into their UST programs [28]. Prior to the initiation of any remediation 
strategies, identification ofleaking USTs has to occur first. 
The majority of Department of Defense (DoD) USTs are steel. A cost effective robotic 
inspection system for assessing the condition of underground storage tanks would allow DoD to 
more cost effectively achieve regulatory compliance. 

1.5 Previous Testing of the Technology 
Previous testing of the Fury robotic system has consisted of operation in a partial tank at the 
RedZone facility for development purposes and also in a local tank as a test deployment prior to 
validation efforts at Ft. Lee, VA. 
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2. Technology Description 

2.1 Description 

The robotic tank inspection system consists offour assemblies: the robot assembly, the 
inspection assembly, the tether management assembly and the operator console (Figure 1). 
The robot assembly supports and moves the inspection assembly over the tank interior surfaces. 
Permanent magnet wheels are used to attach the system to the tank walls allowing the system to 
move over the tank endcaps and overhead portions of the tank wall. Electric motors to power the 
robot components are contained in the purged and pressurized lightweight aluminum robot 
housing. Steering and transition mechanisms are provided for robot mobility. 
The inspection assembly contains the ultrasonic transducer for wall thickness measurement and 
the tank wall cleaning components. Tank wall cleaning is needed to assure ultrasonic wall 
thickness measurement performance. Cleaning is done by powered cleaning wheels and brushes. 
Cleaning system drive is supplied from the robot assembly. The ultrasonic transducer is 
mounted in a guide shoe that protects the transducer and holds it perpendicular to and against the 
tank wall. The guide shoe directs couplant flow to the transducer - wall interface. Tank contents 
are used for couplant to avoid contamination. 
The tether management assembly drives tether into or out of the tank and stores unused tether. A 
guide is provided to minimize tether damage. The tether management assembly is controlled 
from the operator console allowing one person operation. A couplant supply and purge gas 
supply are contained in the tether management assembly. 
The operator console consists of an intelligent controller, an ultrasonic data acquisition system 
and power distribution unit. The operator console displays numeric and graphical information 
showing the position of the robot in the tank and robot status. The inspection system is 
controlled using mouse click selections. The ultrasonic data acquisition system is also controlled 
from the operator console. The power distribution unit supplies electrical power to the intelligent 
controller, ultrasonic data acquisition system, robot assembly and the tether management 
assembly. 

2.2 Strengths, Advantages and Weaknesses 
The robot assembly, inspection assembly and tether are small enough to enter the underground 
storage tank through the four inch diameter pipe used to fill the tank. This eliminates the need to 
dig through pavement and earth to reach the tank and cut an access opening in the tank. This 
avoids damage to the tank or piping during digging and reduces disruption at the tank site. 
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FURY 

Figure I: Photograph of Fury Robot 
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Safety approval or certification is being sought for the robotic system. For the current 
demonstrations safety certification is not needed. The lessons learned from the demonstration 
field experience will be incorporated into a redesigned system which can obtain safety approval. 
The considerable advantage of certification is to allow for use in tanks containing fuel. Tanks do 
not have to be emptied, cleaned, purged, or made inert prior to inspection. This eliminates the 
risk of spillage during emptying and cleaning steps, and the disposal of tank residuals and 
cleaning materials. Disruption of tank operation is also eliminated and the tank can remain in 
service during the inspection. 
A single operator is required for the inspection system. That technician needs specific training in 
the operation of the inspection system and will need to be qualified as a level II ultrasonic 
inspection technician. 
A typical tank inspection can be completed in less than one day. Both NLPA 631 and an EPA 
report [23] recommend sampling of approximately 7% of the USTwall area when using 
ultrasonic thickness techniques. For increased environmental safety this sampling requirement 
has been doubled in the ASTM ES 40-94 standard. Currently a random sampling of the tank 
walls with no overlap is required. There are some indications that a more directed survey might 
be beneficial but thus far this has not been well established nor verified. 
The ultrasonic system directly measures the remaining wall thickness of the tank, the 
measurement of interest. As specified in ASTM ES 40-94, wall thickness is measured to an 
accuracy of+/- 0.010 in. over the tank wall surface as well as under 0.125 in. diameter flat 
bottom pits. The nature ofUST failure, predominantly exterior pitting corrosion, allows for 
accurate measurement using ultrasonic techniques. For very small pits there will necessarily be 
some averaging of measured depth owing to the variation in profile encountered by the input 
pulses. However, as these pits grow (and hence become more of a concern) a more accurate 
value is easily obtained. 
Seam or weld leaks typically occur early in a tank's life and so are removed from older UST 
populations. Seam leaks have been shown to rarely be the cause of failure [3-5]. In addition, 
recent unpublished work strongly suggests that seam leaks very seldom occur without pitting 
corrosion being present. General corrosion over large areas also occurs on the soil side ofUSTs 
but is less of a concern because of its spatial distribution. For the rare cases of interior UST 
corrosion the decrease in remaining wall thickness will be measured with equal effectiveness. 
Differentiation between interior and exterior corrosion is not readily obtained by the robotic 
system. However, the specific ability to identify between the two has very little bearing on UST 
integrity. 
The robot assembly can also move the inspection assembly over 95% of the accessible interior 
of the tank. 
Since the robotic inspection system is operated remotely and does not require workers to enter 
the tank, confined space exposure is eliminated and chemical exposure is reduced. 
Human invasive inspection has been used for many years to determine tank condition. More 
recently, video inspection and mean time to corrosion failure methods have been developed. 
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2.2.1 Human Invasive Inspection. 
Human invasive inspection consists of emptying, purging/inerting, unearthing, cutting, entering, 
desludging, grit blasting, vacuuming, visually and manually inspecting (including probing, 
hammer testing, etc.), and restoring the site after inspection. Personnel enter the tank to prepare 
it for inspection and to perform the inspection. 
Internal manual inspection is required before tank lining, but is not necessary before installing 
cathodic protection. This inspection method is described in API 1631 and included in 40 CFR 
§280.21 (b)(2)(I). 

2.2.2 Mean Time to Corrosion Failure. 
Mean time to corrosion failure is a predictive method, based upon soil characteristics and tank 
age, that has been approved by many states for testing prior to cathodic upgrade. Tank site soil 
samples are laboratory tested for parameters known to promote tank corrosion. Parameter values 
are input into a mathematical model which calculates likelihood of corrosion failure for tanks of 
a given age at the site. Parameters measured include soil pH, resistivity, sulfides, moisture, and 
tank size. 
The advantages of mean time to corrosion failure inspection include no disruption of tank 
operations. To date, the accuracy and value of the method to owner/operators remains unclear, 
and if soil samples reveal evidence of past spills or leaks expensive environmental cleanup may 
be mandated. Mean time to corrosion failure inspection is described in ASTM ES 40-94 . 

2.2.3 Video Invasive Inspection 
Video invasive inspection methods insert specialized cameras and lighting into the fill tube of a 
UST. The camera, on the end of a long stick, is rotated, raised, and lowered to provide a full 
view of the tank interior. High-magnification lenses and explosion-prooflights are used. The 
tank must be emptied prior to inspection. Sludge removal and cleaning may be required to 
expose the tank wall for inspection. 
The advantages of video inspection include creation of a visual record of the tank interior. 
Disadvantages include separate sludge removal costs, no surface cleaning, and surface-only 
characterization. Video is somewhat disruptive in that the equipment, truck, and personnel are 
over the tank pad. 
One disadvantage is that it is a proprietary service available from a private company. Any report 
fully detailing a validation procedure was unable to be located. In conversation with company 
representatives a data base containing 50,000 USTs is often mentioned but is unavailable for 
inspection. 
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2.3 Factors Influencing Costs and Performance 
For those methods where human entry is needed, tank accessibility can be a factor in cost. The 
occasional need to cut a manway will add expense. The methods that require extensive soil 
sampling will have added expense if pavement or concrete is present. 

10 



3. Demonstration Approach and Cost Assessment 

3.1 Performance Objectives 

The main performance objectives are to quantify and document: 
1. Main system components and associated equipment lists. 
2. Set up time, procedures, and any unexpected impediments to inspection/assessment. 
3. Actual inspection rate and all procedures associated with UST integrity assessment 

including duration of each procedure. 
4. Exit procedures (including data storage) and site clean up. 

3.2 Physical Setup and Operation 

The tank filler pipe must be accessible by a vehicle towing a trailer. A source of 110 V AC 20 
amp power must be available. The drop tube must be removed from the tank filler pipe if a drop 
tube is installed. A single operator is required for the robotic inspection system. 

3.3 Sampling Procedures 

The sampling plan for the three, 50,000 gal. USTs at the Hunter Army Air Field is to collect 
ultrasonic thickness measurements on a minimum of 15% of the internal area from each tank. 
The sampling will be randomly distributed over the tank walls and end caps. Various 
measurements of soil parameters will also be taken. 

3.3.1 Selection of Analytical Laboratory. 
An analytical laboratory is not required to perform the demonstration. 

3.3.2 Selection of Reference Method. 
Three reference methods have been selected for the Ft. Lee validation demonstration. The 
reference methods to be used will depend on whether or not the tank will be removed from 
service after completion of the robotic inspection. Mechanical thickness measurements will 
require destruction of the tank since the tank will have to be cut into sections to provide access 
for the measurement tools. Manual ultrasonic wall thickness measurements will not require tank 
destruction. The various media in contact with the outside of an UST should have no effect on 
ultrasonic thickness measurements. The boundary of differing density causing a reflection and 
the known time of flight associated with the original wall thickness both serve to eliminate this 
concern. 
Mechanical wall thickness measurements provide an explicit and direct measurement of the tank 
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wall thickness. Micrometer based thickness measurement tools will provide sufficient accuracy. 

3.3.3 Sample Collection. 
The robotic inspection system produces data files of position locations and corresponding wall 
thicknesses. A scanning pattern that measures the wall thickness of 15% of the accessible 
surface area of the tank, including wall and endcaps, will be used. The 15% inspection area 
figure was arrived at by the ASTM committee of corrosion and UST experts. This figure was 
based in part on an EPA study on UST assessment techniques which effectively suggested that 
approximately 7% of the area was sufficient to determine a tanks condition. Following a 
standard conservative engineering practice this figure was doubled by the ASTM committee for 
safety. The measurements will be distributed in bands of thickness measurements over the tank 
surfaces. A band of continuous ultrasonic thickness data will be taken during each traverse of the 
tank wall from endcap to endcap. So as not to overlap, each traverse will be separated by a 
minimum of one band width. On the end caps the traverses will be from outer edge to outer edge 
which will necessarily result in some overlap near the center of the endcaps. To account for this, 
20% (typically; modified according to tank size) over sampling will be employed. In total, a 
minimum of 15% of the inner tank surface will be inspected with no overlap. A quantitative 
sense of position sensing/representation capabilities will be obtained. 

3.3.4 Experimental Controls. 
Good ultrasonic inspection practice calls for calibrating the equipment on a calibration plate of 
known thicknesses before inspection measurements are taken. Good practice also calls for a 
check of calibration at the completion of the daily measurement activities or when a different 
ultrasonic operator is used. All periodic calibrations shall be either performed or supervised by a 
Level II ultrasonic technician. 

3.3.5 Sample Analysis. 
Post inspection, the data analysis will include the determination of an overall mean value 
(typically with endcaps and tank wall treated separately) as well as the distribution of the thinnest 
measurements. In addition, two published life prediction algorithms will be applied using soil 
data collected in accordance with ASTM ES40-94. 

3.4 Analytical Procedures I Performance Criteria 

To validate and demonstrate the capabilities of the robotic system, older USTs at both Ft. Lee, 
VA and Hunter Army Air Field, GA were assessed for their current condition and suitability for 
upgrade with cathodic protection. The Ft. Lee tank, being scheduled for removal, was used 
mainly for validation purposes. In addition to an inspection in accordance with ASTM ES40-94 
[4], a number of performance capabilities were documented on videotape. This included a real 
time video feed from inside the tank to an outside monitor. The capabilities documented 
included: entry/exit through a riser pipe, adherence to the inner tank wall in all orientations, 
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movement in the forward and reverse directions, obstacle sensing and avoidance, traversal of lap 

joints, transitions to and from endcap walls, navigational accuracy, surface cleaning and 

ultrasonic thickness measurements. After the tank was removed a third party inspection was 

performed by MRI, Inc. in accordance with procedures developed by the EPA [ 5]. 

3.4.1 Contaminants. 
Not applicable. 

3.4.2 Process Waste. 
For these validation and demonstration efforts the USTs will be empty and so no process waste 

will be present. In future inspections, once safety certification has been obtained, the system will 

include a tether handling system which prevents any loss or product. 

3.4.3 Factors Affecting Technology Performance. 
Three factors may affect robotic inspection system performance. Robot mobility may be reduced 

by the presence of obstacles in the tank. The obstacles include tank reinforcements, particularly 

of tank endcaps, and loose objects in the tank. Robot mobility and ultrasonic performance may 

be affected by very firm sludge that cannot be displaced by the robotic system. Internal 

corrosion is not expected to affect performance. The amount of oxygen necessary for corrosion 

in contact with the internal tank walls is limited by the presence of fuel. An existing internal 

coating could affect the thickness measurement, and hence the analysis. This possibility is 

discussed in Appendix A. 

3.4.4 Reliability. 
No reliability problems are expected. A check list is completed prior to robot insertion into the 

tank. In the event of robot assembly failure, the robot can be retrieved by pulling on the tether. 

The geometry of standard cylindrical USTs are such that no tether binding nor 90 degree bends 

are expected. Ultrasonic performance is controlled by calibrating the ultrasonic system before 

robot insertion and by repeating the ultrasonic calibration after the robot is removed from the 

tank. Ultrasonic signals are displayed during inspection for review by the operator. 

3.4.5 Ease of Use. 
The robotic inspection system can be operated by a single trained technician. In addition to 

specific training to operate the robotic system, certification as a level IIR NDT technician is 

required to operate the ultrasonic system. 
It is expected that a tank inspection covering 15%2 of the internal surface area of a tank can be 

completed in less than eight hours from arrival to departure. 

The robotic inspection system equipment can be positioned at the tank site by the same operator 

assuming the tank site is vehicle accessible. Removal of fill connectors and drop tubes can also 

be accomplished by the operator. 

2 As required by ASTM ES 40-94 
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3.4.6 Versatility. 
The robotic inspection system can be used to obtain wall thickness information on a variety of 

steel structures including ships, barges and process vessels. The approval of the system to 

operate in Class 1, Division 1, Group D areas will allow the system to be used where non

approved robots cannot be used. Once safety certification has been obtained, the robotic 

inspection system can also operate within fuel, thus providing additional flexibility. Currently 

the robot is able to operate while immersed in water and other non-flammable liquids. 

Other inspection sensors could be installed in place of the ultrasonic transducer to allow other 

types of inspections to be performed. The design of the robot assembly with a separate 

inspection assembly allows other inspection sensors to be installed with a minimum of 

modification. Possible sensors include magnetic flux, far field eddy current, EMAT and 

corrosion rate measurement. Re-approval would be required to operate the robotic inspection 

system with a new sensor in classified areas. 

3.4. 7 Off-the-Shelf Procurement. 
No proprietary technologies are used in the robotic inspection system. The robotic inspection 

system is assembled from a combination of off the shelf and custom components. Those custom 

components, such as robot housings, magnetic wheels and ultrasonic transducers, can be 

produced by a variety of sources. No exotic materials or manufacturing processes are used in the 

robotic inspection system. 

3.4.8 Maintenance. 
Internal inspection system components are designed to last the life of the product. Non-moving 

components are projected to last a minimum of 10 years while moving parts will likely require 

yearly inspection and possible replacement. Periodic replacement of the tether will be required 

due to abrasion and wear of the tether jacket affecting jacket integrity. The tether is expected to 

last six months to one year depending on usage and test conditions. The high pressure purge gas 

supply cylinder will require more frequent replacement. Generally, as the system is fielded 

incremental improvements in durability will be made. 
The tether can be easily disconnected from the operator console so that inspection operations can 

continue by swapping assemblies. 
Normal vehicular maintenance will be required for the tow vehicle (i.e. oil changes, tire pressure 

checks, etc.) and trailer used to transport the robotic inspection system. The trailer maintenance 

will be minimal but will include periodic checks of turning and brake lights for safety. 

3.4.9 Scale-up Issues. 
No scale up issues exist. The system will be tested in the production intent configuration. 

Continuing design improvements in the robotic inspection system are anticipated as part of 

normal system evolution. 
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3.5 Cost Performance 

It is expected that tank owners will either purchase a robotic system, or alternatively, procure 

inspection services under contract. UST inspections are typically of short duration. However, if 

a particular site or geographic area has a large number of tanks which require periodic inspection 

it may be more economical to purchase a system. All expenses, man-hour logs and associated 

tracking of economic data will be recorded on separate cost performance data sheets. The 

responsibility of accurately recording this information on site will be the responsibility of 

RedZone Inc. with USACERL personnel serving as oversight. 

3.5.1 Start-up Costs 
Site preparation costs incurred prior to inspection will be collected from the installations. These 

could include things like drop tube removal, providing power, providing installation assistance, 

and providing secure storage. It should be noted that many expenses will be reduced or 

eliminated once safety certification has been obtained. 

For these demonstrations all pertinent expenses associated with start-up (prior to commencing 

actual inspection activities) will be recorded and will include: travel time, gas, set-up/calibration 

time, labor, any weather delays, any delays (possibly involving permitting, regulatory, safety, 

coordination/notification), any replacement parts and other. 

3.5.2 Operations and Maintenance Costs 
Ongoing O&M costs have thus far been minimal. After each day's use, cleaning degreasers 

followed by WD-40 were used. It is expected that over time drive chains will need adjustment 

and other minor repairs on a monthly and quarterly basis will be needed. In continuous and daily 

use, a yearly overhaul may be needed, but thus far, that sort of representative experience has not 

occurred. 

3.5.3 Demobilization 
Demobilization costs are expected to be minimal. The expenses associated with storage or 

disposal of system components should be negligible. After a thorough cleaning, the POL 

hazardous waste aspects will not apply. If anything, various components will still have a positive 

worth. For example, the computer and ultrasonic thickness measuring sub-system could both be 

used elsewhere. 

3.5.4 Life-Cycle Costs 
A production model system is estimated to have a first cost of$35,000. A rough figure for 

monthly maintenance is perhaps $300 including materials. A yearly overhaul may cost from 

$1,000 to $2,000. At the end of a 20 year life, major sub-assemblies may still be orth $1,000. 

Without accounting for inflation or a discount factor, the total life cycle cost, less travel and 

salaries, is approximately $136,000 (over 20 years). In contrast, a service provider might 

perform three tank inspections a week, for 10 months out of the year, at $1,400 per inspection. 

This comes to a gross revenue of $168,000 (or cost to installations) in the first year alone, or 

$3.3M over a 20 year span. 
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3.6 Cost Comparisons to Conventional and Other Technologies 

Other technologies, such as those detailed in NLP A 631, require a minimum of $3,000 to defuel, 

clean, and inspect a typicallO,OOO gal. Tanlc In our example above, with the same rate of 

inspection, first year costs to installations would be $360,000. A detailed breakdown of true 

costs for other inspection technologies appears to be unavailable for competitive commercial 

reasons. 
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4. Site Description and Performance Assessment 

4.1 Background 

Demonstration site selection ofUSTs should be based on the following factors: 

1. The USTs to be inspected shall be empty and cleaned and have been in service for at 

least 1 0 years. This will allow for some corrosion to have taken place and also be 

representative of the older population ofUSTs that 40 CFR 280-281 refers to specifically 

2. The USTs to be inspected shall be representative of typical DoD applications. This 

would involve characteristics of capacity, content, use, soil side environment and other 

aspects. For this demonstration both highly refined fuels such as gasoline and less 

refined product such as diesel fuel will be sought. 

3. The USTs to be inspected shall have filler pipes which are accessible by a vehicle 

towing a trailer. 
4. The USTs to be inspected shall have a source of 110 V AC 20 amp power available, or 

less preferred, a comparable portable generator present. 

4.1.1 Pre-Demonstration Sampling and Analysis 

Some pre-demonstration analysis and choice ofUSTs will be required. First, a steel tank older 

than 10 years is required. A site willing to actively participate and assist in a demonstration is 

also necessary. For validation purposes a site with a number ofUSTs marked for removal is 

practical in the event that an alternative UST is needed. USTs with excessive structural 

degradation or that have been exposed internally to rain or ground water should be excluded for 

not being representative of the intended use of the robotic system. As well, lacking safety 

certification, for these demonstrations a clean, defueled, non-explosive environment will be 

required. 

4.2 Site/Facility Characteristics 

The demonstration site will be the Hunter Army Air Field associated with Ft. Stewart, GA. 

Demonstration Site: Ft. Stewart, GA 
Sub-Installation: Hunter Army Air Field 
Location: 10 miles W of Savannah, GA (and NNE from Ft. Stewart) 

Dates: 16-20 SEP 96 
POC: Mr. John Baker (912-767-7876), Mr. Vic Muldon (912-767-5220) 

The Hunter Army Air Field has thirty-one 50,000 gaL USTs which they suspect may be in 

perfectly good condition based on some previously removed tanks. An AlE contractor 

performed a study which concluded that complete replacement was needed and would cost 

approximately $12M. The Ft. Stewart Director of Public Works (DPW) is very interested in 
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reliable information regarding the in-situ condition of these USTs. In discussions with Mr. 

Baker, who has been dealing with this problem for some time, the opinion was expressed that 

Fury is the "only device I know of that can give you that information". 

4.2.1 Site/Facility Photograph 
Figure 2 shows the Ft. Stewart, GA. site. 

4.3 Performance Data 

This paper discusses the application of statistical theory for the determination of probability of 

failure from perforations from maximum pit depths from the Ft. Stewart (Hunter Air Force) tank 

site. Large data sets containing the thickness of Underground Storage Tank (UST) walls were 

procured using the FURY robotic in situ device. Three separate tanks were processed and 

descriptive and inferential statistics are considered. Leak prediction models are developed from 

this analysis. In the case of inferential analysis extreme value statistics are utilized on the 

maximum pit depths obtained from the data and the probability of failure is determined through 

statistical methods. The methods employed characterize a logical approach for determining the 

best parameter estimates and confidence intervals through current statistical techniques. The 
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application of extreme value statistics is first conducted via Least-Squares Estimation to obtain 

initial parameter estimation. Two approaches are employed. First, graphical estimates are made 

by plotting the maximum pit depths on probability paper-the resulting plots gave estimates for 

the slope and shape parameter which are then used to calculate the probability of survival Ps of 

maximum pit depths. The graphical estimates are also used as initial estimates for the Maximum 

Likelihood Estimates (MLE). Second, a statistical program used its own least-squares analysis 

as initial estimates to obtain convergence for methods based upon the Newton-Rhapson method 

for function minimization. The latter method allows us to obtain parameter estimates and 

confidence intervals for an MLE on the probabilities of occurrence of pit depths greater than the 

ones observed and compared with the graphical estimates for the probability of survival. This 

inferential approach is based upon the assumption that the distribution of maximum pit depths 

follows a Gumbel Type I distribution. This assumption is not without precedence; similar 

analysis in the field of failure analysis shows that the Gumbel or extreme distribution is an 

appropriate technique for fitting maximum pit depth data. The probability of survival for any pit 

depth is also based upon a Gumbel Type III distribution. The criteria for perforations is 

established in accordance with specified ASTM requirements. 

A descriptive analysis was conducted on the available data and the distribution of thicknesses is 

presented through histograms over several different thickness regions. Exploratory analysis in 

this manner allows us to characterize each tank's condition by defining areas where wall 

thickness is thinnest. Typically useful descriptive statistics are performed on the data sets. This 

includes the sample means, medians, variance, standard deviations, and ranges. Statistical 

analysis for the parameters include the intercept and scale parameters for the response variable 

(in this case the pit depth), the variance-covariance matrix or information matrix for 

determination of confidence intervals, the standard errors, and statistical tests such as X2 for 

comparison to our initial distribution assumption. 

4.3.1 Descriptive Analysis of UST 
The FURY robot compiled thickness data from three UST's at the Army Installation. Data 

acquisition was completed in 10 ft. tank sections. Approximately 460,000 measurements were 

acquired for tank 3, 340,000 for tank 4, and 160,000 for tank 5. Only the bottom one-third of 

each tank was considered. Histograms are plotted for each tank which show the distribution of 

thicknesses obtained from the analysis. Tables are given for the number of data points over the 

range of thickness values observed for each tank. Tank 5 contains the largest percentage of 

thickness values at the lower thickness ranges. These are shown in region A, B, and C in the 

attached tank 5 histograms. The histograms also show the thickness ranges greater than 0.375 in. 

Tests for outliers are used to exclude spurious data. Reference is made to the tables for the exact 

number of thickness values collected by the robot and the number of thickness values observed 

over a particular range. Most of the thicknesses fall within 0.375 in. The nominal wall thickness 

for tanks having a 50,000 gallon capacity is 0.375 in. An average of76% of the data for all three 

tanks is comprised of thickness values greater than expected nominal wall thickness. 

Determining the error associated with the acoustic measurement is dependent upon several 

variables. 
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4.3.2 Analysis ofError 
First is error associated with instrument accuracy. Accuracy is defined as the difference between 

the ideal input value and the value converted by the sensor, and without any additional error, 

converted back. Second is the type of error introduced through calibration. 

~=s'-s 

With respect to the acoustics, this systematic inaccuracy shifts the transducer stimulus by a 

constant. The shift is not necessarily uniform over the range of stimulus points and depends on 

the type of calibration error introduced. Hysteresis error is defined as a deviation of the sensor's 

output at a specific point of input when it is approached from opposite directions. Finally, non

linearity is defined as the deviation of a real transfer function from the approximation straight 

line. The above are examples Of systematic distortions. Other relevant errors are associated with 

random distortions. Measurement errors not documented or known for the sensors and data 

acquisition system are then analyzed via statistical methods. Considerations for the distortion 

effect of the epoxy on the measuring device are analyzed in this manner. The absolute deviation 

of a value from the mean is defmed by: 

n 
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the average of the deviation or the variance is defined as: 
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Here, s is the sample mean. The square root of the variance is equal to the sample standard 

deviation and measures the dispersion in the sample data. With a large n, v is considered to be 

equal to the true standard deviation. With increasing n the thickness distribution approaches 

Gaussian. This means that approximately 68, 95, and 99% of the thickness values fall within 1, 

2, and 3 standard deviations, respectively. 
Tank 3 has approximately 30% of the thickness values greater than 0.380 in., tank 4 has 

approximately 25% of the thickness values greater than 0.380 in., and tank 5 has approximately 

40% of the thickness values greater than 0.380 in. Outliers are computed through methods like 

the Chauvenet' s criterion and also through normal probability plots. 

4.3.3 Descriptive Statistical Analysis 
Data acquired from the three tanks is analyzed and quantified using the following methodology. 

Thickness distributions and pit depth values are analyzed by fitting distributions from failure life 

analysis models. The application of extreme value statistics is considered for the present purpose 
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and its advantages are defined. Parameter estimation is done via least-squares and maximwn 

likelihood estimation. For the latter, results given include the confidence intervals associated 

with each estimate and the resulting probability of finding a pit depth greater than the maximwn 

observation is found to be within a reasonable limit. Extrapolation of pit depths to predictions of 

probability of survival are based upon graphical estimation of the extreme distribution, i.e., the 

Gwnbel Type III distribution. Assu).llptions for the type of distribution best fitting the pit depths 

are confirmed by the x2 test for significance. 

4.3.3.1 Distributions 
No a priori asswnptions were made regarding the distribution of thicknesses in each tank. In 

order to arrive at stable estimates for the parameters, a null hypothesis was postulated regarding 

the distribution of maximwn pit depths. That is, a Gwnbel distribution is asswned and the 

probability of rejecting this null hypothesis is determined. The Gwnbel distribution was chosen 

based upon past work in the field of analysis of pit depth. Statistical tests are done for such 

inferential statistics via x2 tests which allow us to accept or reject the significance of a calculation 

based upon the Gwnbel distribution. Thus, the probability of perforation by pitting is calculated 

via extreme value statistics (non-parametric methods) and statistical tests are used to judge the 

merits of the initial asswnptions as well as the resulting probabilities. Normal probability plots 

and the frequency distributions are included as part of the descriptive statistical. 

4.3.3.2 Histograms and Distribution of Thicknesses 
Histograms are constructed for all thickness data measured for each tank and plotted against the 

expected normal. Three sets of graphs are included together with their frequency tables. Each 

tank has a graph which shows the overall distribution of thicknesses followed by three smaller 

regions labeled A, B, and C to show the data values at each end of the distribution. Tank 3 has 

approximately 71% of all data points between 0.345 and 0.395 in. For the thinnest values 

approximately 0.04% of all data is between 0.070 and 0.100 in. Tank 4 has approximately 82% 

of all data points between 0.340 and 0.395 in. The thinnest values for tank 4 ranging between 

0.070 and 0.100 in. contain approximately 0.01% of all data points. Tank 5 data values fall 

mainly between 0.350 and 0.395 in. and comprise 74% of all data points. The thinnest values for 

this tank comprise approximately 1% of the data between 0.070 and 0.100 in. Tank 5 has the 

most thinnest values of all tanks with 0.35% of the total thicknesses residing at 0.070 in. The 

histograms for Region C for tank 5 shows graphically the distributions at the lower end of the 

tank. The exact nwnber of data points and the percent and cumulative percent for each thickness 

region is given. 

4.3.4 Theory and Application of Extreme Value Statistics 
The Gwnbel distribution is considered asymptotically efficient. This means it is conducive to 

stable parameter estimates of the data for right tail data for maximwn values for the pit depths. 

Properties of the Gwnbel distribution are termed regularity properties: the maximwn log

likelihood estimates of the Gumbel distribution are also asymptotically unbiased and 

asymptotically normal. Most of the work in extreme value distributions was done by Gwnbel so 
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the extreme value distribution is often referred to by his name. The probability density function 

for the Gumbel Type I distribution is: 

w-p w-p 
- -e" 

f(w) = e" e 
(j 

and the associated cumulative distribution function or survival function is: 

-(X-!') 

F(x) = Pr(X:::;; x) = e-e_"_ 
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Here, e is Euler's constant. The cumulative distribution function (c.d.f.) relates the distribution 

of smallest extremes. This c. d.£ is used for obtaining parameter estimates for observations 

which follow an extreme distribution. The extreme distribution is also equivalent to the 2 

parameter log-Weibull distribution. All extreme distribution are related through a log 

transformation. The c.d.f. for the extreme distribution is a two parameter distribution and for (2), 

f..1 and a are the shape and scale parameters, respectively. These parameter estimates are obtained 

by maximizing the likelihood function formed from the sample observations. Several sample 

sizes are considered from each tank. A function minimizing algorithm (Newton-Rhapson) is 

used to estimate the parameters and calculate the Fisher information matrix (also called the 

Hessian). This matrix allows us to determine the variance, covariance, standard errors, and the 

confidence intervals associated with the parameter estimations. Initial parameter estimates are 

obtained through least-squares estimation. MLE is a better method than least-squares estimation 

because it tends to eliminate bias and gives better standard deviations. Estimation procedures for 

the scale and shape parameter are done in an iterative manner. 

4.3.5 Graphical Estimation of Parameters of Extreme Distribution 
Several different sample numbers of maximum pit depths were used in this and subsequent 

analysis. The general rule of thumb is that 2..Jn values be considered for statistical significance. 

Our large data size allowed us to vary this number for the most stable estimates achievable. 

Therefore, sample sizes range from the top 7 to top 100 points in each tank are considered. A 

methodology is given to show how the probability plots were used to find initial estimates for the 

scale and shape parameter of the Gumbel Type I distribution. Initial estimates for the parameters 

are obtained via graphical estimates. This is done in the following manner: then observed 

extremes are ordered in increasing value and plotted at their relative cumulative frequency, 

referred to here as the plotting position: 

x.,; m=l, 2, 3, ... , n 
m 

IP(x .. )=-1 
n+ 
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For a probability plot, the upper axis gives the probability of occurrence and is defined by the 

following equation: 

(5) 

Here, a is the shape factor in cumulative maximum pit depth distribution. w is the pit depth in 

mils and W is the characteristic deepest pit depth. The reduced variate Y, defined as A( x-U), is 

plotted on the lower x-axis on a linear scale and P w is plotted on the upper x-axis on a non-linear 

scale. TheN extreme pit depths at their relative cumulative frequencies are plotted on theY-axis 

on a linear scale. The resulting data are scattered around a straight line according to the 

following formula: 

1 
X=U+-Y 

A 
(6) 

Therefore, we can determine U and A by fitting a straight line via the method of least squares. 

Note that the data represent maximum pit depths and not perforations. A perforation is defined 

as the time when pit depth reaches the thickness of the tank. The data was taken at one time and 

therefore only one graph is shown for the distribution of these pit depths. The probability of 

survival P, is calculated by extrapolating of the fitted straight line which allows us to determine 

the probability of occurrence of any given value of variate. The Gumbel Type III extreme 

distribution is: 

(7) 

Here, t is the exposure time in years, k is a constant and V is the characteristic age of the tank in 

years. 
Explanation of the graphs: 
Graphs 1-4: Distribution of maximum pit depths 

The lower x-axis gives the reduced variate or theoretical quantile. A Y value of 1, for instance, 

shows that approximately 75% of the data have maximum pit depths less than approximately 110 

mils. Plots of the top 7, 14, 28, and 56 data points for tank 3 are included. 

4.4 Data Assessment I Upgrade Suitability 

The robotic inspection system produces an electronic data file consisting of tank wall thickness 

measurements and the corresponding tank position co-ordinates. The electronic data file has a 

header containing tank and inspection identification information. 

Data from the analytical methods will be recorded on a form that documents: tank site, tank 

identification, date of measurement, analytical method used, analytical equipment description 
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including serial numbers, operator name, tank surface position co-ordinates and corresponding 

wall thickness. 

4.4.1 UST Upgrade Suitability 
As part of the test, demonstration, and validation of the FURY robot,, Russell Corrosion 

Consultants, Inc. (RCC) in association with Bushman & Associates, Inc. were tasked to 

determine the suitability of upgrading the USTs by the addition of cathodic protection. To do 

this, RCC and Bushman were requested to perform the following tasks: 
1) Provide expert corrosion consultation on the USTs being evaluated at Hunter Army 

Airfield (Ft. Stewart, Savannah, GA) in conjunction with the robotic inspection. 

2) Perform external corrosion assessment tests on the USTs being robotically evaluated 

at Hunter AAF in accordance with a protocol developed in ASTM Emergency 

Standard Practice ES-40 entitled "Standard Practice for Alternative Procedures for the 

Assessment of Buried Steel Tanks Prior to the Addition of Cathodic Protection" 

including: 
a) Soil Resistivity Measurements3 

b) Soil Type Analysis 
c) Moisture Content 
d) Presence of Sulfides and Chlorides 
e) Soil pH 
f) Tank to Electrolyte Potentials 

3) Determine if the USTs at Hunter AAF are suitable for upgrading using the ES-40 

protocol given that the robotic inspection will provide the wall thickness deterministic 

value. 
4) Prepare a report detailing the findings of the external corrosion assessments on the 

USTs together with preliminary design recommendations for cathodic protection of 

the USTs if considered appropriate. 
The external corrosion field testing at Hunter AAF was performed during the week of March 3, 

1997, and the report on this work was completed on April 20, 1997. The following conclusions 

were made in the report: 
1) Given that the USTs at Hunter AAF were reported to have been installed in 1953 and 

are therefore 43 years old and have had supplementary cathodic protection, these 

USTs are suitable for upgrading based on the external corrosion data gathered and the 

data evaluation formulae provided by CERL. Ordinarily, even if they had not been 

provided with cathodic protection, they would still also have to pass the maximum 

robotically measured pit depth of 50% of the tank original wall thickness. This 

requirement does not hold for these tanks, however, since they had been upgraded by 

installing cathodic protection before the regulation enactment date of December 22, 

1988. 

3 RCC and Bushman's study reverified the high soil resistivity at Hunter Army Airfield which was documented in a 

1978 Corrosion Survey Report by the U.S. Army Facilities Engineering Support Agency [31]. 
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2) In order to maintain the upgraded status of the Hunter AAF USTs, it is critical that the 
protection levels be restored as soon as possible (and absolutely not later than one 
year from the date of this inspection). This will require a more detailed system 
evaluation, repair and redesign corrosion engineering design study that was outside 
the scope of this project. 

3) Two equations, "MicroGPiper" Equation No.6 and "Leakage Potential ofUSTs" 
Equation No. 6 were provided by CERL for use in this study. In testing the 
sensitivity of the equations to deal with wide variations in soil characteristics, while 
conforming to well established modes of impact on corrosion rates by these variables, 
it became quite evident that the second equation ("Leakage Potential ofUSTs") more 
realistically modeled the probability of corrosion pitting penetration ofUSTs over the 
broadest potential range of variables. 

4) The on site testing necessary to conform to the requirements of the currently 
recognized (by the U. S. EPA's Office of Underground Storage Tanks) ASTM ES-40 
Standard using the Robotic Ultrasonic Invasive Procedure would require less than 4 
to 8 man-hours on site time to acquire the necessary data. 

5) Evaluation of the data under this study required considerable time to develop 
computer analysis tools using Microsoft's Office Pro/Excel97 spreadsheet program 
to facilitate the analysis. CERL should consider having these computer models 
refined and protected for use by their contractors such that the data could be easily 
inputted into the program while providing a uniform and rapid means for assessment 
of the data. This would not eliminate the need for the Corrosion Expert but would 
greatly reduce the amount of time he or she would require to reach a valid conclusion 
using a clearly defined consistent approach as to the upgradeability of the UST 
system being evaluated. 

The full text of this study is included as an attachment to this report [30]. 

4.4.2 Selected Validation Results from Ft. Lee 
One of the most critical comparisons was that of the Fury in situ ultrasonic thickness 
measurements to other reference methods. Three 5x5 square grids with 10 em. spacing were 
located near the center bottom, one approximately one half the distance to the end cap near the 
bottom, and one on one end cap. These test grids were marked out with wax pencil and stamp 
markers. Each measurement location was circled using a vibrating engraver and a robot template 
positioner. The template was used to assure that in-situ comparison measurements with a hand 
held ultrasonic thickness gauge were taken from exactly the same position. Both the robot sensor 
and the hand held thickness gauge were calibrated on the same step block before and after each 
group of measurements. After the tank was pulled the grids were cut out of the tank, sectioned, 
and the same measurements were performed using a standard mechanical micrometer capable of 
an accuracy of 111000 of an inch. The in situ Fury and laboratory micrometer measurements are 
shown in Figures 3 through 5. 

25 



F1 
F2 F4 G1 G3 G5 H2 H4 

--o- Micrometer 

~FURY 

Figure 3. Bottom, Middle Mechanical vs. Fury Thickness Measurement 
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Figure 4. Bottom, Quarter Mechanical vs. Fury Thickness Measurement 
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Figure 5. End Cap Mechanical vs. Fury Thickness Measurement 
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Laboratory analysis of the three 5x5 grid pattern readings were performed in accordance with 

ASTM G46 [25]. In addition, MRI, Inc. performed independent ultrasonic measurements on a 
different grid system in accordance with an EPA procedure for the field evaluation ofUSTs. The 
comparison of the measurements are given in Table 1. It is worth noting that the external hand 
held ultrasonic measurements taken by MRI, Inc. are almost identical to those called for by 
NLP A 631 and, considered alone, were inadequate to determine the tanks condition. In fact, no 
measurement indicating a remaining wall thickness less than 50% of the original value was 
found. 

TABLE 1. Statistical Comparison of Ft. Lee Thickness Data Sets 

Method Position valid n mean( in) 
Fury Robot wall 111952 0.255 
Micrometer wall 50 0.247 

wall 77 0.245 
Ultrasound* 
Fury Robot far end cap 3683 0.324 
Fury Robot near end 18 0.234 

cap 
Micrometer end cap 20# 0.322 

North end 9 0.325 
Ultrasound* cap 

South end 9 0.322 
Ultrasound* cap 

*- MRI ultrasomc tank thickness measurements 
# = five samples were rendered unusable by the cutting torch 
n= number of data points 
mean = average thickness of section 
min = minimum thickness measured in section 
max =maximum thickness measured in section 
std. dev = standard deviation from the mean thickness 

min(in) max( in) std dev(in) 
0.071 0.543 0.033 
0.232 0.262 0.012 
0.222 0.274 0.012 

0.251 0.485 0.0100 
0.071 0.441 0.124 

0.316 0.327 0.003 
0.318 0.331 .005 

0.312 0.328 0.006 

One of the main advantages of the Fury robotic system is its ability to rapidly take data while in 

motion. Virtually all ofthe data taken at Ft. Lee was during the last day of a week long effort 
after a number of other validation tasks had been completed. Table 2 shows the results of a 
statistical analysis for the full data set as separated into tank wall and end caps (which typically 
have a larger initial wall thickness). The Fury data can be displayed in a number of ways. With 
position coordinates associated with each measurement the positions of the thinnest 
measurements can be displayed. Figure 4 shows the four thinnest ranges of measurement for the 

curved tank wall (displayed as if viewed from above and opened to each side from a longitudinal 
top seam). A feature along a lower circumference approximately eight feet from the southern 
end cap is evident. This feature was visually confirmed after the tank was removed. One 
possible explanation is that during installation a lifting strap caused some initial damage which 
over time lead to differential corrosive attack. 
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TABLE 2. Statistical Analysis of Complete Ft. Lee Data Set 

Position valid n mean(in) min(in) 
Wall 111952 0.2549 0.0707 

Far end cap 3683 0.3244 0.2508 

Near end cap 18 0.2336 0.0707 
(4 Smallest Thtekness Ranges) 

Distance Up Wall From 0 (feet) 

max(in) std dev(in) 
0.5426 
0.4845 
0.4412 

Thickness Range 

o v5>=0.07 AND v5<.12 
o v5>=.12 AND v5<.13 
o v5>=.13ANDv5<.14 
1t. v5>=.14 AND v5<.15 

0.0333 
0.0100 
0.1243 

Figure 6. Location Distribution of 1000 Thinnest Wall Thickness Measurements 

4.4.3 Validation and Results at Hunter Army Airfield 
Fury collected in excess of940,000 measurements from three USTs at Hunter Army Airfield. 

Each of the tanks were selected from three separate pump stations each consisting of a bank of 

10 tanks. Measurements on the bottom one-third were emphasized in order to provide a 

conservative assessment. Table 3 summarizes the results obtained after correction for an internal 

epoxy coating. The data was then sorted according to thickness. Table 4 shows the results of an 

analysis of the 500 thinnest measurements. Histograms showing the number of measurements 

within successive ranges of wall thickness are shown in Figures 7- 12. Tanks 3 and 4 appear to 

be in pretty good shape while Tank 5 clearly shows a large number of observations at the lower 

thickness ranges. Taken together with the findings from the other procedures detailed in ASTM 

ES40-94 tanks 3 and 4 are considered suitable for upgrade while tank 5 is not. 

From a corrosion engineering viewpoint the character of the wall thickness histograms is 

intriguing. It may be that as a tank undergoes the accumulated damage of corrosive degradation 

the condition represented by Figures 8 and 10 evolves more toward a condition represented by 

Figure 12. The statistics of these so called "extreme values" (e.g., the thinnest measurements) is 

currently being examined. The potential benefits include a further improvement in knowing a 

tanks condition, with either an equal or lesser amount of data, as well as a greater understanding 

of the degradation process itself. 
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Tank 
3 
4 
5 

Tank 
3 
4 
5 

TABLE 3. Descriptive Analysis of Hunter Airfield Data Set 

Valid n mean(in) min(in) max( in) std. dev(in) 

463408 0.38945 0.07096 0.56196 0.03232 

321919 0.37601 0.07563 0.58053 0.03305 

157183 0.36974 0.07034 0.57284 0.06551 

TABLE 4. 500 Thinnest Data Points at Hunter Army Airfield 

§ 
8 

mean(in) min(in) max(in) 

0.12664 0.07096 0.14700 

0.13498 0.07563 0.14973 

0.07252 0.07034 0.07614 

Hunter AAF (Tank 3) 

vvrf ~ 

~ ~ 
Thickness (inches) 

Figure 7. Thickness Distribution in Tank 3 

Hunter AAF (Tank 3, Region C) 

0 v 
N 

v" v ~ v 
X X X 

" " u " v v v 
0 ~ 0 ~ 

~ ~ ~ '" N 

Thickness (inches) 

std. dev(in) 
0.02270 
0.01299 
0.00164 

Figure 8. Thickness Distribution Region C in Tank 3 (Figure 5) 
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Figure 12. Region C Thickness Distribution Tank 5, (Figure 9) 

4.5 Technology Comparison 

Prior to this effort and associated work that resulted in the ASTM standard, the only guidance as 

to procedures used to assess the integrity of an underground storage tank was National Leak 

Prevention Association (NLPA) standard 631. NLPA 631 allows both hammer testing and hand 

held ultrasonic thickness testing. Both of these procedures require human entry into an emptied, 

cleaned and vapor free tank. Combined with the surface preparation requirements contained in 

NLP A 631, a tank being inspected happens to then be ready to have an internal liner installed. 

Hammer testing is a non-quantitative method, which historically was first used for boiler 

inspection. One or more inspectors typically use a ball peen hammer by gently striking the tank 

from the inside while looking for areas where the wall has become thin. This is indicated by the 

feel of the rebound. NLPA 631 suggests that inspectors first practice on known 0.125 in. and 

0.25 in. thick plates. 
Hand held ultrasonic thickness measurements consist of an inspector inside the tank using a 

standard device, which uses a time-of-flight ultrasound approach. Measurements are taken one 

per three foot square. Depending on the result, occasionally the nine one foot squares within the 

area will also be measured at the frequency of one measurement per square foot. A typical hand 

held ultrasonic thickness measurement can take from two to ten minutes. A typical 10,000 gal. 

Tank will be assessed on perhaps 80 to 100 measurements. These measurements in total 

represent [100 * (25/(750* 144))]% = 2.3% of the surface area of the tank. 

In comparison, Fury does not require human entry. Fury also takes ultrasonic thickness 

measurements at a rate of 30 per sec. This capability leads to the ability to sample 15% of the 

surface area and therefore obtains a much more representative sample. In addition, using the 

procedures detailed in the ASTM standard, external soil chemistry and resistivity data are 

combined with the direct measurements of wall thickness in order to predict remaining tank life 

before first leak. This result can be used by tank managers to make well informed decisions. 
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5. Regulatory Issues 

5.1 Approach to Regulatory Compliance and Acceptance 

Some regulatory issues associated with these demonstrations have been identified. At Ft. 

Stewart various health and safety aspects were checked on but did not represent insurmountable 

hurdles. When human entry was needed for validation purposes, masks, harnesses with retrieval 

tethers, and oxygen sensors were required. In addition, before each entry, must be certified to be 

"vapor free" by a certified individual. 
Both, volatile organic compound (VOC) release and petroleum, oils and lubricant (POL) spills 

did not apply to these demonstrations since the tanks were empty and vapor free. In intended 

future inspections in fully fueled tanks a tether handling system should limit any POL spills 

associated with tether removal. The non-recurring point source release of volatile organic 

compounds (VOCs) will be minimal and will also be limited owing to the use of an inert gas in 

the tank head space. 
In addition, safety certification should greatly promote regulatory acceptance (both State and 

Federal) as well as greatly improving the cost of inspection. 
Use in a fueled tan is intended to begin by introducing an inert gas through the vent pipe. At 

least ten times the volume of either the tank or the head space would be used to initially flow 

through the head space. A chambered launching device would be added, and the tan would be 

sealed. Once an over pressure of inert gas is in the tank relative to the atmosphere, the robot 

would be activated and launched. Alternatively, the unpowered robot could be inserted without a 

launching device and additional inert gas would be used. If at any time a loss of pressure is 

detected in the tank then all power to the robot would be automatically cut. Also present will be 

at least two pressure release valves for the tan itself, separated by no less than five feet. After 

copleting an inspection the robot would be positioned below the point of entry, the power cut, 

and the robot would be retrieved. The approach may vary depending on whether the product is 

#6 fuel oil, or JP4. 

5.2 Quality Assurance 

The purpose of the Quality Assurance Plan is to specify the means of assuring that the specified 

procedures are followed, that the specified data is gathered and that the specified documentation 

is retained. The Quality Assurance Plan applies to the Technical Demonstration Plan activities 

involving the inspection and evaluation of data for three tanks. 

5.2.1 Quality Assurance Responsibilities 
A representative of the US Army Construction Engineering Research Laboratories is responsible 

for quality assurance auditing. 
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5.2.2 Data Quality Parameters 
There are five data quality parameters: representativeness, completeness, comparability, 

accuracy and precision. Representativeness refers to the degree to which the data accurately and 

precisely represent the conditions or characteristics of the parameter represented by the data. 

Completeness refers to the amount of data collected from a measurement process compared to 

the amount that was expected to be obtained. Comparability refers to the confidence with which 

one data set can be compared to another. Accuracy refers to the degree of agreement of a 

measurement to the true value. Precision refers to the reproducibility of measurements of the 

same characteristic, usually under a given set of conditions. 

The periodic representativeness of the Ft. Stewart data (aside from periodic before and after 

calibrations) will be assumed dependent upon the Ft. Lee validation results. No human entry is 

scheduled for the Ft. Stewart tanks. 
The completeness of the robotic inspection system data is expected to be less than 1 00% due to 

variations in ultrasonic coupling to the tank wall. Inadequate ultrasonic coupling will result in 

signals that cannot be automatically analyzed to determine wall thickness. However, inadequate 

measurements are easily identified during data analysis. Over sampling is used to easily 

compensate for this. 
Comparability, accuracy, and precision are additional measures of data quality and are 

considered extensively in the validation inspection performed at Ft. Lee. For the Ft. Stewart and 

subsequent inspections the representative sampling required by ASTM ES40-94 should be 

sufficiently representative of a tank's condition. 

5.2.3 Calibration Procedures, Quality Control Checks and Corrective Action 

The operating procedures for the robotic inspection system contain calibration procedures, 

quality control checks and corrective actions for the robotic inspection system wall thickness 

measurement system. 

5.2.4 Demonstration Procedures 
Technology start-up will consist of connecting the tether to the operating system, assuming that 

each sub-system is functioning properly and performing the initial ultrasonic thickness 

calibration. 

5.2.5 Calculation of Data Quality Indicators 
Completeness will be determined by dividing the total number of non zero data entrees in a 

robotic inspection data set by the total number of entries in that data set. 

Precision will be measured by computing the standard deviation of 30 thickness measurements 

made on a block approximately 0.25 in. thick. 

5.2.6 Performance and System Audits 
Two on site audits will be conducted. One audit will occur while the robotic inspection system is 

inspecting a tank. This audit will verify that robotic inspection system calibration and operating 

procedures are being followed, and that robotic inspection system data is being properly stored. 

A second audit should occur while the manual tank wall thickness measurements are being made. 
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This audit will verify that the appropriate calibration and operating procedures are being 

followed. 
A contingency laboratory is not required. 

5.2. 7 Quality Assurance Reports 
A report will be prepared by the auditor at the conclusion of the tank testing documenting the 

results of the audit activities. Significant problems that would affect the usefulness of the 

collected data will be reported immediately to the ESTCP project manager and the auditor's 

supervisor at US Army Construction Engineering Research Laboratories. 
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6. Technology Implementation 

6.1 DoD Need 

The DoD need for this technology, in terms of total number of regulated USTs, is currently 

decreasing. However, it is projected that there will still be a significant number of regulated 

USTs that will need periodic integrity assessment inspections for some time to come. As an 

example, the U.S. Army Training and Indoctrination Command (TRADOC) plans to maintain 

approximately 400 USTs into the foreseeable future. Projected proportionally across DoD, this 

suggests at least 6,000 to 10,000 ongoing regulated USTs. In addition, for a period of time, a 

small subset of steel tans will reach 1 0 years of age and will become prime candidates for 

integrity assessment with the Fury robotic system. 

6.2 Transition 

The transition to widespread implementation could occur along two paths, either separately or 

simultaneously. The first would be to place a Fury inspection system and one to three trained 

operators in a region. They would then provide inspection services within that region as needed. 

It is projected that a production model of the Fury system will cost approximately $30-SOK. 

Operator training could be as short as one to two days. 

The second implementation path would be for environmental service companies to provide 

inspections on an as needed basis. A number of articles and presentations have generated 

commercial interest. Additionally, two-day training sessions sponsored by ASTM and pertaining , 

to the standard expected to be final this August (as opposed to the emergency standard which 4' 

went into effect in 1994) should also generate commercial interest.~ection cost of$1,400 

for a typical 10,000 gal. Tan is projected. However, the market forces of supply and demand will 

also have an effect. Data reduction typically takes about two days, and can be performed by any 

computer literate individual. The development of a dedicated program could cut this down to 

two hours. Using a standardized report template, a corrosion engineer can produce report in 

about one hour. An example of a spreadsheet template has been previously supplied to the 

ESTCP program office. 
The timing of implementation appears to be somewhat problematic. The was a concerted and 

coordinated opposition to the ASTM standard by a determined minority whose exclusive 

business interest were perceived to be under threat. After much effort and delay ASTM officials 

stepped in to facilitate the finalization of a consensus based standard in strict accordance with 

their official procedures. The inability thus far to attract funding for safety certification for 

immersion in fuel has also had a detrimental effect on implementation. However, there is much 

interest and implementation is proceeding considering the large number ofUSTs, as well as 

above ground storage tanks, that will still be in use after the upcoming deadline. Effectively, the 
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actual "deadline" for USTs will be defined by the enforcement by state regulators. Regulation 

for above ground storage tanks is expected within the next few years. 

Further assisting implementation is the pursuit of a patent on the Fury system. A detailed patent 

with 14 figures and 50 claims has been submitted to the Corps of Engineers Headquarters. In 

addition, a Cooperative Research and Development Agreement (CRADA) will soon be finalized 

with the industry partner. With these documents, multiple robot production companies can be 

employed in a cost effective manner. In summary, multiple implementation efforts are ongoing 

which have effectively made up for the six month delay in receipt of initial funding. 
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7. Lessons Learned 

A remote robotic UST inspection and condition assessment system has been both validated and 

demonstrated at two separate sites on a total of four tanks. Virtually all the capabilities of the 

system were verified and documented. In terms of wall thickness data acquisition Fury advances 

the state of the art by three or four orders of magnitude compared to current methods. Another 

benefit is the ability to inspect a tank without requiring human entry. The results obtained from 

the Hunter AAF inspections are representative of how Fury can be used as a tool in order for 

owners to make better informed decisions about UST management. In addition, it will also allow 

tank owners to more cost effectively comply with federal, state and local requirements prior to 

the 1998 deadline and beyond. 
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Appendix A 

Points of Contact 

Dr. Charles Marsh: USACERL; P.O. Box 9005; 2902 Newmark Dr.; Champaign, IL 61821; 

217-373-6764; c-marsh@cecer.army.mil 

Frank J. Robb: RedZone Robotics; 2425 Liberty Ave.; Pittsburgh, PA 15222-4639; 412-765· 

3064; frobb@redzone.com 
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AppendixB 

Data Archiving and Demonstration Plan 

Two copies have been made of all electronic files relevant to the demonstration onto diskettes or 

other permanent storage media. 
All electronic files, documents_ and samples collected will be stored at the US Army Construction 

Engineering Research Laboratories in Champaign, IL. 

Copies of the approved demonstration plan may be obtained from the US Army Construction 

Engineering Research Laboratories in Champaign, IL. 
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Appendix C 

Sound Velocity in Epoxy 

The sound velocity in epoxy is given by the equation for the speed of sound in a solid. (I) 

...J(Y/p )=Vsound 

where 
Y= Young's modulus or the elastic modulus 

p= Density of the epoxy 

Young's modulus is the ratio of the tension stress to the tension strain and can be computed from 

the tensile stress/strain data on the epoxy.<1l 

3k(l-2cr)=Y 

where 
k= Compression modulus 
cr= Poisson ratio 

The compression modulus is the ratio of the compressive stress to the cubical compression. The 

Poisson ratio is the ratio of the transverse contraction strain to the transverse elongation strain. 

The sound speed can be rewritten as: 

...J(3k(l-2cr)/p )=Vsound 

Most manufacturers do not determine the tensile properties of the epoxies. Dow Chemical did 

provide such data on its DERAKANE 470 epoxy resin used for lining steel tanks used in storing 

solvents and fuels.<2J(3) 

k= 0.95xl06 psi or 6.55xl09 kgm/sec2 

cr=0.411 

Dow did not release data on the solid density of the hardened epoxy but typical densities of a 

solid epoxy were given by Ameron Protective Coatings. The range of densities are: <
4
l 

p= 16-22lbs/gals 
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A density of22lbs/gals has a sound velocity of0.62xl05 in/sec and a density of I6lbs/gals has a 
sound velocity of0.73xl05 in/sec. In the tank analysis a conservative value of0.6xi05 in/sec was 
used for the sound speed in the epoxy. 

Sources: 
(I) I.S. Sokolnikoff, "Mathematical Theory of Elasticity", Second Edition (I986), Robert E. 

Krieger Publishing, Malabar, Florida 
(2) Dow Chemical, "DERAKANE Epoxy Vinyl Ester Resins: Technical Product Information", 

Revised Edition I 0/95 
(3) Dow Chemical, "DERAKANE Epoxy Vinyl Ester Resins: Chemical Resistance and 

Engineering Guide", Revised Edition I 0/95 
(4) Personal communication with Ameron Protective Coatings. 

Appendix D 

ROI for Army Implementation 

Problem/Technology: At least 4,000 Army Underground Storage Tanks (USTs) will need to 
comply with the 22 December I998 deadline contained in 40 CFR 2804. Thereafter a 
considerable and ongoing need for inspection will also exist. The "Fury" remote robotic 
condition inspection/assessment system will dramatically decrease inspection/assessment costs, 
greatly improve accuracy/reliability over existing techniques, help avoid soil and water 
contamination, help avoid the cost ofUST replacement, improve mission readiness by not 

4 Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage 
Tanks (UST's) 
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requiring de-fueling, and eliminate the danger and expense of human entry into these confined 
spaces. 

Implementation: Regulatory acceptance by the EPA Office of Underground Storage Tanks 
(EPA OUST) will be through a nationally recognized standard. ASTM ES40-94, which covers 
remote UST inspection, was previously recognized by the EPA OUST and has been revised and 
improved for a..1 upcoming ASTM wide vote. It is expected that installations will purchase 
inspection services from contractors who have purchased production models of Fury. Currently 
an advanced prototype has been validated at Ft. Lee, VA and demonstrated at Hunter AAF, GA 
under ESTCP. Alternatively, selected Area Offices or Districts could purchase Fury robots and 
periodically supply the service as needed. 

Cost to Implement Army Wide: 

$600 K Safety Certification 
$ 50 K first production model 
4,000 USTs x $1,200 = $4,800 K (Fury inspection cost per tank) 
4,000 USTs x 0.90 x $800 = $2,880 K (approximate cost to retrofit with cathodic 

protection) 
$8,330 K 

Cost Savings to Installations: 

tank) 
4,000 USTs x $3,000 = $12,000 K (current inspection technology cost per 

4,000 USTs x 0.10 x $125,000 = $50,000 K 
4,000 USTs x 0.10 x $35,000 = $14,000 K 
$76,000 K 

(remediation cost using EPA average) 
(replacement cost) 

ROI = 8.12 (Note: Based on inspection alone the ROI = 1.50) 

Qualitative Benefits: 1. A void the need for the danger of confmed space entry 
2. Avoid the need to interrupt operations (increased readiness) 
3. Accuracy of each UST assessment drastically improved 

(e.g., IOO,OOOs of measurements vs. Ballpeen hammer) 

Assumptions: I. The Army currently has and will maintain 4,000 regulated USTs 
2. Virtually all of the Army's tanks currently require assessment 
3. 10% of Army tanks are leaking (90% can be upgraded) 
4. Fury inspections will be available as a service to installations 
5. The average cost per tank of cathodic protection retrofit is $800 
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6. A typical replacement cost for a 12,000 gal. tank is $35,000 

(Source: Southern Cathodic Protection, Atlanta, GA) 

7. ROI =simple return on investment= (net savings) I (investment for those 

savings) 

Case Study: Hunter Army Air Field (Savannah, GA) 

Hunter AAF currently has 30 USTs, each of 50,000 gal., which were installed around 

1956. An AlE contractor recommended complete replacement at a cost of $1OM. An assessment 

of three of these tanks was performed in accordance with ASTM ES40-94. Two of the three 

were found suitable for upgrade with cathodic protection in order to be brought into compliance 

with Federal Law (40 CFR 280). The Army Petroleum Center cost of these three inspections 

totaled $40K ($20K to CERL and $20K to the installation to empty, clean and provide a vapor 

free environment). It should be noted that these inspections were part of a research effort with an 

advanced prototype device and that these tanks were considerably larger then average. The cost 

per typical inspection/assessment should decrease dramatically. 

Assuming the same proportion of suitability for upgrade for all 30 tanks the avoided cost 

for replacement alone would be: 
Implement --
Avoided replacement-

ROI = 15.8 

10 x ($40K I 3 USTs) = $400K 

$10,000 K X 67% = $6,700 K 

This calculation ignores the avoided cost of remediation and the cost of retrofit/upgrade with 

cathodic protection. 
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